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Application of the chemical pseudopotential method to 
the calculation of the energy band structure of CUI v 

D R MaSoviC 
Laboratory for Theoretical Physics. Boris KidriE Institute for Nuclear Sciences, VinEa, 
PO Box 522,11001 Beograd, Yugoslavia 

Received 4 July 1988, in final form 27 January 1989 

Abstract. The band structure of CUI v (a tetragonal phase under pressure) is calculated by 
applying the chemical pseudopotential method. The estimation of the energy gap is given 
and the results are compared to the previous linear muffin-tin orbital calculation. The spin- 
orbit interaction effects are taken into consideration. The paper also points out to some 
important limitations of the chemical pseudopotential method. 

1. Introduction 

Recently Blacha et al [ 11 have reported results of measurements of optical-absorption 
spectra of thin films of copper halides (CuCl, CUI and CuBr) for pressures between 0 
and 10 GPa. In this interval the copper halides undergo a number of structural phase 
transitions [2]. On the basis of appropriate considerations they observed that, in tetra- 
gonal phases of CUI and CuCl, the absorption peaks can be assigned to the edge excitons 
at the r point ( k  = 0 in the Brillouin zone (BZ)) related to the electrons in the lowest 
conduction band and the holes in the highest valence bands. They performed band- 
structure calculations by the fully relativistic, self-consistent (sc) linear muffin-tin orbital 
(LMTO) method but their results for absorption edges are lower than the experimental 
exciton energies. For example, the energy gap between the highest valence band and 
the lowest conduction band at the rpoin t  for CUI v (tetragonal phase) is 1.3 eV, i.e. less 
than half the experimental gap of 2.92 eV [3]. This is an expected consequence of the 
local-density approximation applied in the LMTO method [4]. 

Here, the energy band structure of CUI v is given on the basis of the chemical 
pseudopotential method [5], which appears to be quite useful in the tight-binding analysis 
of energy bands [6]. The purpose of this paper is to estimate the energy gap of CUI 
v within this method. In § 2 the crystal structure and group-theoretical analysis are 
presented. In §§ 3 and 4 the results of the calculation are given and some of this chemical 
pseudopotential method’s limitations are pointed out. The conclusions are given in Q 5 .  

However, CuCl is not treated because of uncertainties in crystallographic structure 
in the tetragonal phase of this compound [ 11. 
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Figure 1. Unit cell of the tetragonal PbO structure 
of CUI v. The positions of the atoms within the 
unit cell are given in the text. a = 4.02 A ,  c = 

5.70 A. 

Figure 2. The first Brillouin zone shown with sym- 
metry points and lines. 

2. The crystal structure and the group-theoretical analysis 

CUI v has the PbO structure, shown in figure 1. The unit cell is a simple tetragonal with 
two copper and two iodine atoms. The coordinates of these atoms with respect to the 
coordinate system at the point 0 are: (i) ( -a /4 ,  -a /4 ,  -Zc);  (ii) (a /4 ,  - a / 4 , 0 ) ;  (iii) 
( -a /4 ,  a / 4 , 0 ) ;  (iv) ( a / 4 ,  a /4 ,  (4 - 5)~); with Z = 0.28 [l]. For .F = 0.25 there is an ideal 
crystal structure belonging to the space group Dih with 16 symmetry operations. The 
generating elements [7] of the space group Djh are the operators 

{I 10 0 O> {GX 1 ha 0 0) {C& I t a  0 0) 
where Ck and C& are associated with the non-primitive translations. The matrix rep- 
resentatives belonging to the irreducible representations of the small group G(k)  for k 
at the points and along the symmetry lines in the BZ (figure 2) are given in table 1. The 
small representations are obtained by Neto's program [8] except for E and S directions? 
where the tables from Bradley and Cracknell [7] are used along with necessary modi- 
fications due to the different choice of the origin of coordinate system. 

The 5s2p5 configuration of I and 3d1°4s' configuration of Cu are taken into con- 
sideration. Appropriate symmetrised linear combinations of atomic orbitals (SLCAO) 
are given in table 2. They are obtained on the basis of the procedure described in [9]. 

3. The Hermitian form of the chemical pseudopotential 

Within the framework of the chemical pseudopotential method [5 ,6]  energy eigenvalues 
E(k)  of the crystal Hamiltonian are obtained by solving the secular equation 

JA, - E(k)6,1 = 0 (1) 

t There is certain instability in Neto's program when the irreducible representations are calculated along 
these directions in the BZ. The cause of this instability is not known to us. 
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Table 1. Matrices of the irreducible representations of the small group G(k)  for k at the 
points and along the symmetry lines in the BZ for the space group Dih. Each representation 
is completely determined by giving matrices for the generating elements. The matrices for 
all other elements of a group can be calculated from the given matrices. 

1+ 
2+ 
3+ 
4+ 

5+ 

1- 
2- 
3- 
4- 

5- 

-1 
-1 
-1 
-1 

1 
-1 

1 
-1 

i: 
1 

-1 
1 

-1 

i: 

1 
1 

-1 
-1 

1 
1 

-1 
-1 

1 P 
2 -P 
3 P 
4 -P 

P 
P 

-P 
-P 



7318 D R MaSouii. 

1 P 
2 P 
3 -P 
4 -P 

1 
-1 

1 
-1 

1 1 
2 1 
3 -1 
4 -1 

5 (0 

1 
-1 

1 
-1 

(-; -3 
~ 

1 1 
2 1 
3 -1 
4 -1 

1 
-1 

1 
-1 

a [7], p 348. 
p = 
P = 

* p = 

0 (r) s I s 1 (M), (0 (2) s I G 1 (A)). 
0 (X) S I s 1 (M), (0  (R) S 1 S 1 (A)). 
0 (r) s 1 s 1 (X), (0 (Z) 6 1 s 1 (K)). 

where A, is 
N 

A ,  = ( Q j / S 2 , ) ' / *  exp[ik(R, + 7, - 7 p ) l  DU,mi.  ( 2 )  
m = l  

Indices i and j in (2) denote type of atoms a and /3 in the unit cell and their appropriate 
quantum numbers. R, is the lattice vector, 7, and r p  are vectors of non-primitive 
translations and N is the number of unit cells in the crystal. Qj and 52, are normalised 
factors determined on the basis of formula (4) in [lo]. 

Dlj,mi is the interaction matrix 

where S-' is the inverse of the overlap matrix. In formula (3) the first sum indices, as 
well as the first atomic orbital indices C # I r i , ,  C#Imi, always correspond to the lattice vectors, 
whereas the second ones mean the same as i and j in formula (2). V$ is equal to 

vz = vi(m) - V,(n)  (4) 

where Vj(m) and Vr(n) are atomic potentials in the unit cells m and n ,  centred at 
respective sites. For our calculation two approximations have been used in formula (3): 
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Table 2. The symmetrised linear combinations of the 5s, 5p (I) and 4s, 3d (Cu) atomic 
orbitals. Subscripts 1,2 ,3 ,4 ,  denote the atoms on which the orbitals are centred (figure 1). 
s, x, y, , . . , z2 ,  x2 - yz, xy, . . . denote s , px, pv, , . , , d3r2_,2, dx2_?2, dxy , . . . functions. 

(a) W )  
1+ 
3' 
4+ XY2 + XY3 

5+ 

s1 + s4 (s, - is4), z: + z:, z1 - 2 4  (zl + iz4),s2 + s3 
(x2 - Y2)z + ( X Z  - Y2)3 

- x ~ , x z ~  +Xz3 iX' Y1 -Y4>Yzz + Y Z 3  

1- XY2 - XY3 
2- 
4- 

5- 

si - s4 (sl + is4), ( x z  - y2)2 - ( x 2  - y2);, z1 + 24 (zl - iz4) 
s2 - s3, 2: - 2:  

X I  + x4, X Z ~  - XZ3 

Y 1  + Y 4 , y z 2  - Y z 3  

(continued 
overleaf) 
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Table 2. continued 

the first one is to take into account only terms appropriate to a two-centre approximation, 
like in a diatomic molecule, while the second consists of assuming the atomic orbitals 
centred on different sites in a crystal to be approximately orthogonalised. 

Thus only two-centre matrix elements appear in the off-diagonal components D1l,mr, 
in the following form: 

@ T/ (rA (m> - (l>1 @m,  (rB )d yB. ( 5 )  i,, 
The method for their calculation that we applied in this paper is described in [ l l ,  121, so 
that only practical calculation details will be presented here. rA and rB in ( 5 )  are the 
position vectors relative to the two nuclei A and B and RB is an integration sphere 
centred at B. The radius of the sphere is determined by the point where the two atomic 
potentials are equal. Integration (5) is reduced to a simple radial integration using the 
expansion of a spherical harmonic on one site about another and the orthogonality of 
the spherical harmonics on one site [13]. The radial part of the atomic orbitals used here 
are the analytic Roothaan-Hartree-Fock functions 

Ng 

R , ~  (Y) = cnlP [(2nlP !I (2clP + 1 / 2 ~ n l ~  - ‘e - 5 ~  (6) 
p = l  

where the parameters cnlp, nip, gc and number Ng for each atom are given in [14]. 
Interactions are considered for inter-atomic distances up to 12 au. 

The appropriate atomic eigenvalues E, [15] are used as diagonal matrix elements in 
D,,,, instead of the values 
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The matrix D in (2) is a "Hermitian matrix [6]. The explicit proof that the energy 
eigenvalues for non-Hermitian pseudopotential equation are real is given in [16]. Owing 
to the approximations used in our model this proof cannot be applied, so that the 
problem of reality of energy will appear. Then the non-Hermitian matrix should be 
transformed into Hermitian ones [17,18]. This transformation corresponds to the sub- 
stitution of the off-diagonal matrix elements DllSmf and Dmr,l, by the mean value 

W," = DLf.1, = @I," + ~ m r J , ) P *  (8) 

The band structure of CUI v calculated in this way is shown in figure 3. The energy 
gap is 2.21 eV, that is, it is 20% lower than the experimental one. The next level in the 
conduction band lies very high, at 9.07 eV. 

P 
w 

.. 
- 3  

r M X r R A 

Figure 3. rA .le band structure of CUI v obtained by applying the chemical pseudopotential in 
Hermitian form (see formula (8)). The lowest 5s states of I are not shown. 

A problem appeared while trying to classify wavefunctions according to the irre- 
ducible representations of the small group G(k) .  Therefore the whole calculation pro- 
cedure is carried out twice for the ideal crystal structure (2= 0.25): (a) a non- 
symmetrised basis with 20 orbitals has been used and (b) the SLCAO wavefunctions have 
been used as basis sets and secular equations of the corresponding order have been 
solved. 

By comparing the results obtained, the following conclusions have been drawn: the 
same energy levels are obtained only in the case when the corresponding matrix elements 
Dlj,mi and Dmi,lj are equal, For instance, the energy levels with Cu atomic orbitals d, or 
dx2-y~ appear in both cases with the same wavefunctions. In all other cases there was a 
smaller or greater difference between the energy levels calculated using (a) and (b). The 
most noticeable deviation is in the levels with atomic wavefunctions having magnetic 
quantum number m = 0. Precisely, the problem is caused by p, orbitals. After averaging 
(8), the most dominant matrix elements (s(Cu)p(I)), appear with the same sign as that 
of matrix elements (s(Cu)s(I)),. Therefore at the top of the valence band and next to 
the s orbitals a combination pz of the I orbitals forbidden by symmetry appears. It has 
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been shown that due to the approximation (8) atomic orbitals pz act as if they have 
symmetry properties of s orbitals. This does not only happen on the top of the valence 
band. By calculating the band structure along the direction A in the BZ and by checking 
all the wavefunctions in all the bands, it has been shown that the orbitals pz always 
behave in this way; table 2 shows that the following combinations of the atomic s and 
pz orbitals correspond to the irreducible representation A I :  s1 + s4, s2  + s3 and 
pz l  - pz4.  However, in the cases when the given combination of s orbitals appear, the 
orbitals pz appear as p z l  + pz4.  This is the characteristic combination for the irreducible 
representation A3,  The opposite also holds true: along with the allowed combinations 
of s orbitals of the irreducible representation A 3  (sl - s4 and s2 - s3), the orbitals pz 
appear as pz l  - pz4,  that is, as if they are s orbitals. Otherwise it has not been noticed 
that the p,orbitals appear in combinations with other, symmetrically not allowed, atomic 
orbitals. 

4. Non-Hermitian approach 

Within this approach the basis set SLCAO orbitals is used separately for each irreducible 
representation in the secular equation (1). The approximation (8) has not been used. 
This is an important approach since the matrix D in (2) is known to be non-Hermitian 
and thus the choice of the basis wavefunctions affects the results obtained for band 
structure. In this way the possibilities offered by the mathematical apparatus of group 
theory are most effectively used. 

At the r point real energy eigenvalues are obtained for all irreducible representations 
except for rl where an imaginary component forms -2% of the real part. The results 
obtained are shown on the left side of figure 4. We can add that in our calculation the 5s 
states of I are treated separately since they are situated -10 eV below the p and d atomic 
levels and thus form a rather isolated s-like band. 

Figure 4. The band structure of CUI v at the r 
point obtained by applying the non-Hermitian 
chemical pseudopotential. Left side: spin-orbit 
coupling omitted. Right side: spin-orbit coupling 
included. 

The energy gap is 2.97 eV. The analysis of the results has shown that the energy levels, 
whose difference defines the energy gap, corresponds to the irreducible representation 
r; with wavefunctions that in general form represent a mixture of 4s and 3d atomic 
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wavefunctions of Cu (table 2). The difference between the atomic levels Eft - 
E$; = 3.18 eV used in this paper is very close to the experimental value of the energy 
gap (figure 4), so that the chemical pseudopotential, as a ‘weak perturbation’, can closely 
describe the band gap of CUI v. This is further confirmed by the fact that when the 4s 
level in the calculation is treated separately, that is, when s-d matrix elements are 
excluded, the calculated value of the energy gap is 2.81 eV. Atomic, non-relativistic sc 
potentials (and non-relativistic levels) are used here with full Slater exchange 
(CY = 1) [15]. The free choice of the parameter a gives semi-empirical character to this 
calculation. 

The lowest conduction band is almost completely derived from 4s Cu levels: 

where y 2  + 6* = 1. The respective coefficient values are y 2  = 0.99 and a2  = 0.01. 
According to the data given in [l] the level order at the top of the valence band appears 
to be 

1 E(T, E(2r3  ). 

In our case the level order is the opposite. The wavefunction of the top of the valence 
band has the same form as in the lowest conduction band, but with coefficients 

r i  y 2  = 0.06 6* = 0.94. 

The level E(2r;) = -0.21 eV (figure 4) lies below E ( r 4 ) .  The p d  hybridisation is the 
strongest in the states corresponding to this level: 

4PXI  - PX,) + P(dxz* + dxzJ 
217: 

6 P Y l  - P,,) + P(d,z, + dyzJ 

The admixture coefficients CY and P can be used to characterise the strength of p d  
hybridisation of the valence band. Our results a2 = 0.60 and P2 = 0.40 are in good 
agreement with the results given in [ l ]  (a2 = 0.61 and /3* = 0.39). For the irreducible 
representation r; , two levels are obtained in the states, being obviously of d and p 
character, respectively: 

The energy difference between the highest valence band and next lowest conduction 
band is 4.67 eV. This difference is 2.17 eV in [l] .  The valence band width is 10.87 eV 
compared to -7 eV in [ 11. 

In [l] the effect of spin-orbit (so) coupling in the highest valence band at the r point 
of the BZ has been examined and it has been shown that the so splitting is responsible 
for the difference between the edge excitons in the spectrum (0.465 eV at 6.5 GPa, see 
figure 6 in [l]) .  The so interaction effects are also included in this calculation at the F 
point. By the general procedure described in 1161, the chemical pseudopotential of the 
SO interaction is derived (see Appendix). For the r point the formula is rather simple 
and it comes to involvement of the atomic data 

+ E & )  (9) 
in the diagonal matrix elements for p and d states, respectively. The atomic parameter 
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Table 3. Matrices of the irreducible representations at the r point of the BZ for the double 
space groupa. 

{-d,I$a 0 0 )  (710 0 0)  

6' 

6- 

-( 1 1 -1 (-0 -Ai (l: : i  
v2 1 

7 -  

a [7] ,  p 523. 

of the so interaction for Cu (Ecu = 4.6 x is obtained by means of the Wood-Boring 
program [19] whereas for I it is obtained by means of interpolation on the basis of the 
data presented in [15] (EI = 2.6 x 

The irreducible representation matrices appropriate for the double space group for 
the elements of the group generators are taken from Bradley and Cracknell [7] (table 
3). The symmetrised combination of atomic wavefunctions with spinors is shown in table 
4. 

Table 4. The symmetrised linear combinations of atomic orbitals with spinors ( U - ,  U + )  at the 
r point, where 

F = x ,  - x 4 + i ( y ,  - y 4 )  
G = xz2 + x z 3  + i(y.2, + y z 3 )  
R = x i  + x ,  + i(y, + y , )  

P = x z 2  - xz3  + i(yzz - Y Z ~ )  

f= ( x 2  - y ' ) .  
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The calculation shows that there are no changes in the level order at the top of the 
valence band (figure 4). The difference of the appropriate levels is 

E ( r ; )  - E(r: ,  r,+) = 0.3 eV 

E(T; )  - E(2r;) = 0.45 eV. 

On the basis of these results we cannot with assurance confirm that within our approach 
the so coupling on the top of the valence band is responsible for the appearance of the 
absorption peaks in figure 6 in [ 11. 

The calculation of the band structure in other directions and at other points in the 
BZ has not given the expected results. This mostly refers to the band structure along the 
directions A and Z in the BZ, where the two bands intersect the band gap, and this 
has been checked by appropriate analytical calculations. This situation has not been 
essentially changed by involving the 5s wavefunctions of I in the basis set. 

5. Conclusions 

It has been shown in this paper that by using the chemical pseudopotential in the 
Hermitian form, that is, by using the approximation (8), the band structure of CUI v 
can be calculated. The results for the energy gap are in a better agreement with the 
experimental ones than those obtained by the previous LMTO method. The disadvantage 
of this method is in the fact that most of the wavefunctions cannot be classified according 
to the irreducible representations of the small group G(k) .  This is a consequence of the 
approximation (8) by which, for instance, the symmetry of the atomic orbital pz has been 
changed. This essentially affects the shape of the band structure. 

The non-Hermitian chemical pseudopotential with SLCAO basis sets provides accu- 
rate calculation of the energy gap only at the r point of the BZ. The failure of the attempt 
to calculate the full band structure reveals a much deeper disagreement between the 
mathematical apparatus of group theory and our model of the non-Hermitian chemical 
pseudopotential. 
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Appendix. The chemical pseudopotential of the spin-orbit interaction: derivation for the 
r point of the BZ 

Starting from Weisz’s assumption [20] that the part of the Hamiltonian corresponding 
to the so interaction term can be expressed in the form of a sum of isolated atomic so 
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contributions 

the chemical pseudopotential [ 161 with so interaction included can be written in the form 

[ T  + V,n + H i o  + = &El I @:,). (A2) 

Equation (A2) is analogous to equation (15) in [16]. @zl in (A2) is a SLCAO function with 
basis spinors ( U + ,  U - )  and 9 denotes the corresponding irreducible representation of 
the double space group (table 3). 

By applying the procedure described in [16] and the approximations from § 3, the 
interaction matrix is obtained in the following form: 

(VT + HTso) - P"(VT + HFso)]  
n f m  

DE mi = E [ ( @ ? ~ , I v T  + ~ ~ ~ O I @ z i , i ( l -  a m , )  + ~ z / g k m 6 i i  (A31 
n 

The secular equation matrix elements are related to the interaction matrix Yimilarly 
as in formula (2): 

that is, 

A; = ~?a,,  + E' exp(ikRm) (4: 1 VT 1 @%) + C' exp(iMm) (4; 1HTSo (A5) 

while only two-centre matrix elements from (A3) are taken into consideration here. The 
last term in (A5) is eliminated when the band structure is calculated at the r point since 

m m 

h2 1 d V  Hso = r x k - o .  
4m2c2 r d r  

For E: in (A5) an approximate formula is 

E? = (@? I Ha 143 
where Ha is a Hamiltonian of the isolated atom with so term included. 

according to the following formula: 
Thus the secular equation matrix elements at the r point are finally calculated 

By concrete calculation of the diagonal matrix elements for the irreducible rep- 
resentation given in table 3 and by using the SLCAO functions with spinors in table 4, 
formula (9) in this paper can be proved. 
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